Statistical Rethinking


Книга Statistical Rethinking Автор: Richard McElreath
Издательство: Chapman and Hall/CRC

Год: December 21, 2015
Страниц: 487
Язык: английский
Формат:
ISBN: 1482253445

 
Аннотация:

 Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work.

The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation.

By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling.

Web Resource

The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.

 

Скачать книгу из интернета:

Вас заинтересует / Intresting for you:

Data Mining For Dummies
Data Mining For Dummies 684 просмотров Алексей Вятский Tue, 21 Nov 2017, 13:19:55
Data Mining for the Masses
Data Mining for the Masses 679 просмотров Алексей Вятский Tue, 21 Nov 2017, 13:19:55
Mastering Splunk
Mastering Splunk 950 просмотров Алексей Вятский Tue, 21 Nov 2017, 13:19:55
Pro Vagrant
Pro Vagrant 857 просмотров Алексей Вятский Tue, 21 Nov 2017, 13:21:45
Войдите чтобы комментировать